Term	Topic/Unit title	Essential knowledge and skills (what students should know, understand and be able to do by the end of the unit/topic)
Autumn 1	Proof and mathematical communication	 Know about mathematical structures and arguments Learn to use inequality, interval and set notation Understand disproof by counter-example See some proofs using deduction Understand proof by exhaustion
	Indices and Surds	 Using the laws of indices to simplify expressions. Simplify expressions containing surds, including rationalising the denominator.
	Quadratic Functions.	 Review the GCSE methods with quadratic equations but extending to manipulating an equation to make it into the standard format. Recognise and sketch the graphs of quadratic functions - sketching a curve from an equation, and finding an equation from a curve. Complete the square, but with the focus on more challenging expressions than GCSE presents. Solve quadratic inequalities Know what the discriminant is, and understand its role in determining the nature of the solution set. Learn to solve disguised quadratics
	Co-ordinate Geometry, Logs	 Find the distance between two points, and the mid-point of two points Find the equation of a straight line in the form y - y 1 = m(x = x 1) and ax + by + c = 0 Determine whether two lines are parallel or perpendicular Find the equation of a circle with a given centre and radius Solve problems involving intersections of lines and circles

Year 12 A LEVEL MATHS Curriculum Map

	Exponential Modelling.	 Undo exponential functions using logarithms Use the laws of logarithms Use logarithms to find exact solutions to exponential equations Use a special number called <i>e</i>. Learn about the graphs of exponential functions Understand why exponential graphs are used in modelling Learn how to use logarithms to transform non linear graphs into linear graphs
Autumn 2	Polynomials,	 Learn how to define a polynomial Find the product of two polynomials Find the quotient of two polynomials Find the factors of a polynomial Sketch polynomials
	Using Graphs	 Use the link between solving simultaneous equations and intersecting lines and curves. Determine the number of intersections between a line and a curve Use transformations of graphs Use graphs and applications of direct and inverse proportion Illustrate two variable inequalities on a graph
	Derivatives & Differentiation	 Be able to sketch the gradient function for a curve Find the derivative of a function from first principles Differentiate simple polynomials Determine whether a function is increasing or decreasing
	Binomial Expansion	 Learn how to expand (a + b)ⁿ for integer values of n. Know how to find individual terms rather than the whole expression Use expansions to find approximations Use the n! and nC_r notations

	Trigonometry	 Understand the trig functions, their properties and graphs
		• Learn how to solve equations involving trig functions
		• Learn the trig identities
		Use identities to solve harder equations
	Triangle Geometry	 Use the sine rule to find the angles of any triangle Use the cosine rule to find the angles of any triangle Use A = ¹/₂ ab Sin C
Caring 1		
Spring 1	Applications of Differentiation	 Use differentiation to solve problems of finding tangents and normals to curves at given points. Learn to find maxima and minima on curves Be able to maximise or minimise quantities
	Integration	 Learn how to carry out the inverse of differentiation Find the equation of a curve given a derivative and a point on the curve Find the area between a curve and the x axis using integration
	Vectors	 Use <i>i</i> and <i>j</i> vectors to represent problems Learn how to find the magnitude of a vector Work with combinations of vectors Recognise when vectors are parallel Find unit vectors Use positions and displacements Solve geometrical problems with vectors
	Introduction to Kinematics	 Begin to work with displacement, velocity and acceleration and understand the links and differences to scalar quantities Use calculus to link the three vector quantities Represent motion on a travel graph Solve multi stage problems

Spring 2	Constant Acceleration Formulae Working with Data	 Derive the equations for motion with constant acceleration Use the constant acceleration formulae Solve problems involving motion under gravity Solve multi stage problems Learn to interpret statistical diagrams including stem and leaf, histograms, scatter graphs, cumulative frequency curves and box and whisker plots. Learn to calculate standard deviation Understand correlation
Summer 1	Probability	 Learn what causes motion, and understand the concept of a force Learn how force is related to acceleration Understand what happens when several forces act on an object Learn about different forces including gravity Know how to determine if a particle is in equilibrium Recognise the difference between a sample and a population
	nypotnesis resting	 Use different sampling methods Use the correct vocabulary relating to hypothesis testing Carry out a hypothesis test involving a binomial distribution Learn what causes motion, and understand the concept of a force
	Forces and Motion	 Learn how force is related to acceleration Understand what happens when several forces act on an object Learn about different forces including gravity Know how to determine if a particle is in equilibrium
	Objects in Contact	 Learn to apply Newton's Third Law - objects exert equal and opposite forces on each other. Learn how to calculate the contact forces between objects Learn how to find tensions where objects are connected Learn how to solve connected particle pulley problems

Functions • Learn	a about one to one and many to one functions
	rabout one to one and many to one functions
• Lear	n about domains and ranges
• Find	composite functions
• Find	the inverse of a function
Proof • Revie • Lear • Lear	ew proof by deduction, proof by exhaustion and by counter example. n proof by contradiction n to criticise proofs.
Sequences & Series Series Dete Lear Lear	rmine the behaviour of some sequences sigma notation n about constant differences and constant ratios n about infinite sequences

Year 13 A LEVEL MATHS Curriculum Map

Term	Topic/Unit title	Essential knowledge and skills (what students should know, understand and be able to do by the end of the unit/topic)
Autumn 1	Radian Measure	 Learn what radians are Calculate special values of trig functions in radians
	Further Trigonometry	 Use trigonometric modelling in real life situations Solve geometric problems involving circles Approximate trig functions by polynomials Use the sum and difference formulae Simplify sums of trig functions Learn the reciprocal trig functions
	Calculus of Exponential and Trig Functions	 Differentiate e^x, ln x, sin x, cos x and tan x Integrate e^x, 1/x, sin x, cos x Use calculus to solve geometrical problems

	Further Graph Transformations	 Draw a graph following two or more transformations Find the equation of a graph after a combination of transformations Sketch graphs involving the modulus function
		 Use modulus graphs to solve equations and inequalities
	Rational Functions and Partial Fractions	 Manipulate rational functions using operations including division Split rational functions into partial fractions
	Binomial Expansion	 Expand (a + bx)ⁿ where n is any rational power Use binomial expansions to make approximations
	Conditional Probability	 Use set notation to describe probabilities Work with conditional probabilities using Venn Diagrams, Two Way Tables and Tree Diagrams
	Normal Distribution	 Calculate probabilities for a normally distributed random variable Relate distributions to the standard one Calculate cumulative probabilities Find means and standard deviations Use the normal distribution as a model Use the normal distribution to approximate the binomial
Autumn 2	Further Differentiation	 Differentiate using the chain rule Differentiate products and quotients Find the derivatives of functions expressed implicitly Differentiate inverse functions
	Further Integration	 Integrate using known derivatives Use the chain rule in reverse Use integration by substitution (change of variable) Use integration by parts Integrate using trig identities Integrate quotients by separating into partial fractions
	Hypothesis Testing	• Learn that the sample mean is a random variable

	 Know how the sample mean is distributed
	• Test whether the mean of a distribution is different from a predicted value
	• Test sets of bi variate for significant correlation
	-
Calculus Applications	 Use second derivatives to determine the shape of a curve
	Describe curves using parameters
	Calculate connected rates of change
	Find the area between two curves
Differential Equations	 Solve differential equations by separation of variable
	Write differential equations from given contexts
	 Interpret the solution of a differential equation and decide if it's realistic in a size context.
	given context.
	• Find the roots of an equation using change of sign methods
Numerical Integration	 Learn to use the Newton Raphson method
	Used fixed point iteration
	 Identify occasions when iterative methods may fail
Vector Applications	 Describe motion using velocity, displacement and acceleration vectors
	 Use constant acceleration formulae with vectors
	 Use calculus with vectors
	 Learn to use the standard base vectors
	 Solve geometrical problems in 3d
	 Model projectile motion in 2d
Projectiles	 Find maximum heights and ranges of projectiles
	• Find the Cartesian equation of the trajectory of a projectile
Forces in Context	 Resolve forces in order to calculate resultants
	Use a model for friction
	 Determine the acceleration of a particle on an inclined plane
	 Know how to find the turning effect of a force
Moments	 Solve problems involving rods and laminas
	Calculus Applications Differential Equations Numerical Integration Vector Applications Projectiles Forces in Context Moments

		 Find the centre of mass of a non uniform rod Use the idea of rotational equilibrium
Spring 2	Revision	
Summer 1	Revision	